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Abstract Maize (Zea mays L.) breeders evaluate many

single-cross hybrids each year in multiple environments.

Our objective was to determine the usefulness of

genomewide predictions, based on marker effects from

maize single-cross data, for identifying the best untested

single crosses and the best inbreds within a biparental

cross. We considered 479 experimental maize single

crosses between 59 Iowa Stiff Stalk Synthetic (BSSS)

inbreds and 44 non-BSSS inbreds. The single crosses were

evaluated in multilocation experiments from 2001 to 2009

and the BSSS and non-BSSS inbreds had genotypic data

for 669 single nucleotide polymorphism (SNP) markers.

Single-cross performance was predicted by a previous best

linear unbiased prediction (BLUP) approach that utilized

marker-based relatedness and information on relatives, and

from genomewide marker effects calculated by ridge-

regression BLUP (RR-BLUP). With BLUP, the mean

prediction accuracy (rMG) of single-cross performance was

0.87 for grain yield, 0.90 for grain moisture, 0.69 for stalk

lodging, and 0.84 for root lodging. The BLUP and

RR-BLUP models did not lead to rMG values that differed

significantly. We then used the RR-BLUP model, devel-

oped from single-cross data, to predict the performance of

testcrosses within 14 biparental populations. The rMG val-

ues within each testcross population were generally low

and were often negative. These results were obtained

despite the above-average level of linkage disequilibrium,

i.e., r2 between adjacent markers of 0.35 in the BSSS

inbreds and 0.26 in the non-BSSS inbreds. Overall, our

results suggested that genomewide marker effects esti-

mated from maize single crosses are not advantageous

(compared with BLUP) for predicting single-cross perfor-

mance and have erratic usefulness for predicting testcross

performance within a biparental cross.

Introduction

Genomewide selection (or genomic selection) is a method

for marker-assisted selection without quantitative trait

locus (QTL) mapping. Genomewide selection uses all

available markers instead of only those markers linked to

QTL to identify the best individuals in a population

(Meuwissen et al. 2001). Our previous studies have shown

that genomewide selection is effective within a biparental

cross, where genomewide prediction equations are con-

structed from phenotypic and marker data from the prog-

eny of a cross between two inbreds (e.g., A 9 B) and are

applied to an untested subset of individuals of the same

A 9 B cross in one or more cycles of selection (Bernardo

and Yu 2007; Lorenzana and Bernardo 2009; Bernardo

et al. 2011).

Commercial maize breeding programs generate large

numbers of single crosses that are widely evaluated across

multiple environments (Hallauer 1990; Bernardo 1996a).

Instead of using phenotypic and marker data from the
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progeny of an A 9 B breeding cross, single-cross hybrid

data could be used as a training population for genome-

wide selection of the best inbreds within the A 9 B cross.

In addition, the genomewide marker effects estimated

from single-cross hybrid data could be used to identify the

best single crosses prior to testing. In this case, genome-

wide prediction of single-cross performance needs to be

compared to previous approaches used to predict single-

cross performance. In particular, the best linear unbiased

prediction (BLUP) has previously been found useful for

predicting the performance of untested single crosses

based on the performance of the tested single crosses and

the relatedness between the untested and tested single

crosses (Bernardo 1994; 1996a, b). While genomewide

predictions of single-cross performance would rely on

genomewide marker effects, such previous BLUP

approach for predicting single cross performance utilizes

any available marker data only to estimate relatedness

among parental inbreds (Bernardo 1994). Correlations

between predicted and observed maize single-cross per-

formance ranged from 0.42 to 0.76 for grain yield, 0.75 to

0.93 for grain moisture, 0.30 to 0.74 for stalk lodging, and

0.16 to 0.53 for root lodging (Bernardo 1996a). The BLUP

approach has since been routinely used in maize breeding

programs.

Single-cross hybrid data have two key features that

make them attractive as training populations in genome-

wide selection. First, experimental single crosses comprise

elite germplasm in a maize breeding program, and the

parental inbreds of single-cross hybrids are the ones used

most often in creating A 9 B biparental populations from

which new inbreds are developed (Hallauer 1990). Second,

the extensive multi-environment testing of single crosses

permits a sampling of a wide array of genotype-environ-

ment interactions (Smith et al. 1999). Single-cross data

have been successfully used to detect QTL within different

heterotic groups in maize (Parisseaux and Bernardo 2004;

van Eeuwijk et al. 2010).

Published information is unavailable, however, on the

usefulness of single-cross hybrid data for genomewide

selection. Our objective was to determine the usefulness of

genomewide predictions, based on marker effects esti-

mated from maize single-cross data, for identifying the best

untested single crosses and the best inbreds within a

biparental cross.

Materials and methods

Single-cross phenotypic and SNP data

We considered 479 experimental maize single crosses

developed and tested by AgReliant Genetics, LLC. The

single crosses were made between 59 Iowa Stiff Stalk

Synthetic (BSSS) inbreds and 44 non-BSSS inbreds and

had relative maturities of 104–115 days. Each BSSS inbred

was crossed with 1–24 non-BSSS inbreds (mean of 8.4).

Each non-BSSS inbred was crossed with 1–48 BSSS in-

breds (mean of 11.4).

The phenotypic data set was taken from 271 experi-

ments conducted by AgReliant Genetics from 2001 to

2009, with one experiment being defined as a set of hybrids

evaluated in multiple locations in a given year. Each of the

271 experiments was conducted at 6–66 locations in the US

Corn Belt (Supplementary Fig. 1). The data were highly

unbalanced across experiments but, aside from occasional

missing plots at individual locations, were balanced within

each experiment. The single crosses were evaluated for

grain yield, grain moisture, stalk lodging, and root lodging.

The number of experiments for each single cross had a

mean of 4.75 and a median of 2 (Supplementary Fig. 2).

The mean number of locations per experiment was 25 for

grain yield and grain moisture, and 23 for stalk and root

lodging.

The 103 BSSS and non-BSSS inbreds were genotyped

with 768 well-distributed SNP markers used routinely by

AgReliant Genetics. We retained 669 SNP markers after

screening the marker data against excessive heterozygosity

and missing genotypes. All markers were mapped to the

IBM2 2008 neighbors map, available on MaizeGDB.org,

for the intermated B73 9 Mo17 population (Lee et al.

2002). To correct for the expansion of the IBM2 map due

to several generations of intermating the B73 9 Mo17

population, the map distances between adjacent markers

were divided by a factor of 3.8. This factor was determined

by comparing the map distances of common markers

between the IBM2 2008 neighbors map versus the 1997

and 1999 maps (available on MaizeGDB.org) of a non-

intermated B73 9 Mo17 population. To characterize

linkage disequilibrium (LD), r2 values were calculated

between all pairs of markers using Haploview v 4.0 (Bar-

rett et al. 2005).

Some inbreds had a transgenic and a non-transgenic

version. As shown later, the presence of transgenes was

modeled as a fixed effect. A total of 37 different combi-

nations of transgenes were present in the data set.

Marker-based estimates of coefficient of coancestry

Marker similarity was calculated among all inbreds as the

proportion of SNP loci at which two inbreds were homo-

zygous for the same SNP allele. Marker-based estimates of

the coefficient of coancestry (fij) were then calculated

among the BSSS inbreds and among the non-BSSS inbreds.

Within a heterotic group, the probability that unrelated

inbreds had alleles that were alike in state was unknown.
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Assuming that (1) the probability of alikeness in state

between unrelated inbreds was equal between the BSSS

and non-BSSS heterotic groups and that (2) the BSSS

inbreds were unrelated to the non-BSSS inbreds, the fol-

lowing procedure was used to estimate fij. Suppose i and

j were two inbreds in the same heterotic group. The fij was

estimated as [Sij – 0.5(Si– ? Sj–)]/[1 – 0.5 (Si– ? Sj–)],

where Sij was the marker similarity between i and j; Si– was

the mean marker similarity between i and all inbreds in the

opposite heterotic group; and Sj– was the mean marker

similarity between j and all inbreds in the opposite heter-

otic group (Bernardo 1993). Only 1.8 % of the fij estimates

were negative and were set equal to zero.

BLUP model for predicting single-cross performance

The BLUP model was the same as that described by

Bernardo (1996a), except that the current analysis included

the fixed effects of transgenes and excluded the effects of

check hybrids. Assume that N single crosses were made

between n1 BSSS inbreds and n2 non-BSSS inbreds. The

single crosses, which included t transgene combinations,

were evaluated in c experiments resulting in p data points.

The linear model for single-cross performance for a given

trait was

y ¼ X0bþ X1hþ Z1g1 þ Z2g2 þ Z3sþ e ð1Þ

where y = p 9 1 vector of observed single-cross perfor-

mance; b = c 9 1 vector of fixed effects due to experi-

ments; h = t 9 1 vector of fixed effects due to transgene

combinations; g1 = n1 9 1 vector of random effects due

to general combining ability (GCA) of BSSS inbreds;

g2 = n2 9 1 vector of random effects due to GCA of non-

BSSS inbreds; s = N 9 1 vector of random effects due to

specific combining ability (SCA) of single crosses; and

e = p 9 1 vector of residual effects. The X0, X1, Z1, Z2,

and Z3 incidence matrices related y to b, h, g1, g2, and s,

respectively.

The covariance matrices for random effects were

V(g1) = G1VGCA1, V(g2) = G2VGCA2, V(s) = SVSCA, and

V(e) = RVR, where VGCA1 was the variance of GCA

effects among BSSS inbreds; VGCA2 was the variance of

GCA effects among non-BSSS inbreds; VSCA was the

variance of SCA effects; and VR was the residual variance.

The i 9 j element in G1 was equal to fij, the marker-based

estimate of coefficient of coancestry between BSSS inbreds

i and j. Likewise, the i0 9 j0 element in G2 was equal to fi0j0

between non-BSSS inbreds i0 and j0. The element in S that

corresponded to the (i 9 i0) and (j 9 j0) pair of single

crosses was equal to fijfi0j0. R was a diagonal matrix with

diagonal elements equal to the reciprocal of the number of

locations in the corresponding experiment.

Solutions for b, h, g1, g2, and s were obtained from the

mixed-model equations for single crosses (Henderson

1984; Bernardo 1996a). Restricted maximum likelihood

estimates of VGCA1, VGCA2, VSCA, and VR were obtained as

described by Henderson (1984) and Bernardo (1996a). For

each trait, the heritability (h2) among single crosses was

calculated on an entry-mean basis as (VGCA1 ? VGCA2 ?

VSCA)/(VGCA1 ? VGCA2 ? VSCA ? VR/eh), where eh was

the harmonic mean of the number of environments (i.e.,

location–year combinations) where the single crosses

were evaluated. The numbers of environments used to

evaluate each single cross corresponded to the diagonal

elements of the Z3
0R21Z3 diagonal matrix (Bernardo

1996a).

RR-BLUP for genomewide prediction of single-cross

performance

We calculated genomewide marker effects by ridge-

regression BLUP (RR-BLUP), which assumes that each

marker accounted for the same proportion of genetic var-

iance (Meuwissen et al. 2001). Simulation results have

shown only a minimal loss of selection response due to the

convenient but incorrect assumption of equal marker

variances in RR-BLUP (Bernardo and Yu 2007). Empirical

results in maize, barley (Hordeum vulgare L.), Arabidop-

sis, oat (Avena sativa L.) and wheat (Triticum aestivum L.)

(Lorenzana and Bernardo 2009; Guo et al. 2012; Asoro

et al. 2011; Heffner et al. 2011a, b) have strongly indicated

that RR-BLUP is preferable to Bayesian methods that

permit unequal marker variances and epistasis (Meuwissen

et al. 2001; Xu 2003; Dekkers 2009).

The linear model for RR-BLUP with NM markers was

similar to Eq. 1:

y ¼ X0bþ X1hþW1m1 þW2m2 þW3m3 þ e

where y, X0, b, X1, h, and e were as defined for Eq. 1; m1

was an NM 9 1 vector of GCA random effects of markers

among BSSS inbreds; m2 was an NM 9 1 vector of GCA

random effects of markers among non-BSSS inbreds; m3

was an NM 9 1 vector of SCA random effects associated

with the BSSS and non-BSSS marker alleles at each SNP

locus; and W1, W2, and W3 were incidence matrices that

related y to m1, m2, and m3, respectively. In each heterotic

group, the GCA random effect at each SNP locus was

expressed as half the difference (in a random-effects

model) between the means of the two homozygotes at the

biallelic SNP locus. The elements of incidence matrices

W1 and W2 were therefore equal to 1 or -1. Given that

SCA is a linear 9 linear interaction, the element of W3 at

a given locus was equal to the product of the elements of

W1 and W2 at the same locus.
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The variances of random marker effects were V(m1) =

I(VGCA1/NM), V(m2) = I(VGCA2/NM), and V(m3) = I(VSCA/

NM), where I was an identity matrix and estimates of

VGCA1, VGCA2, and VSCA were those obtained in the BLUP

analysis. Solutions for b, h, m1, m2, and m3 were obtained

from the corresponding mixed-model equations.

Cross-validation analysis

Tenfold cross-validation was used to compare the accuracy

of RR-BLUP versus BLUP. The 479 single crosses were

randomly divided into 10 sets with 48 crosses per set (47 in

the last set). In each cross-validation analysis, nine of the

ten sets formed the training data set to construct genome-

wide prediction equations and the remaining set formed the

validation data set for single-cross predictions. Estimates of

VGCA1, VGCA2, VSCA, and VR were obtained from the nine

sets in each analysis (Henderson 1984; Bernardo 1996a).

The performance of the untested hybrids was then pre-

dicted as described below, and the correlation between

predicted and observed performance (adjusted for fixed

effects; see next paragraph) was calculated. This procedure

was repeated until each of the ten sets had been assumed

untested. Finally, the mean correlation across the ten cross-

validation replicates was calculated. All statistical analyses

were performed with PROC IML in SAS version 9.1.

The performance of each single cross was first adjusted

for fixed effects. Suppose NT is the number of tested single

crosses and N – NT = NU is the number of untested single

crosses. The adjusted performance of all N single crosses

(yA) was calculated as (Bernardo 1996a).

yA ¼ ðZ3
0R�1Z3Þ�1Z3

0R�1ðy� X0b� X1hÞ

The performance of the NT tested single crosses (yT)

was obtained as a subset of yA. The performance of the NU

untested single crosses (yU) was then predicted from yT as

(Bernardo 1996a)

yU ¼ CUTC�1
TTyT

where CUT was an NU 9 NT matrix of genetic covariances

between untested and tested single crosses, and CTT was an

NT 9 NT matrix of phenotypic covariances among the

tested single crosses. Consider the (i 9 i0) and (j 9 j0) pair

of single crosses, both tested or one of them being an

untested single cross. The elements of CUT as well as the

off-diagonal elements of CTT were calculated as (Stuber

and Cockerham 1966)

Cov[(i 9 i0), (j 9 j0)] = fij VGCA1 ? fi0j0 VGCA2

? fijfi0j0 VSCA

The three genetic components of single-cross perfor-

mance in Eq. 1 were therefore expressed in the form of

the covariance among single crosses in both CUT and CTT.

The ith diagonal element of CTT was equal to the above

equation for the genetic covariance plus VR/(ith diagonal

element of Z3
0R21Z3 matrix).

For RR-BLUP, performance of the untested single

crosses (yU) was predicted as

yU ¼ U1m1 þ U2m2 þ U3m3

where m1, m2, and m3 were the genomewide marker GCA

and SCA effects among the tested single crosses, and U1,

U2, and U3 were incidence matrices that related yU to m1,

m2, and m3, respectively.

Each BSSS inbred used as a single-cross parent in the

test set had been tested in combination with at least one

non-BSSS inbred in the estimation set, and vice versa. We

also examined the predictive ability of the models when an

inbred, used as one of the single-cross parents in the test

set, had not been tested in any single-cross combination

(Bernardo 1996b). This was accomplished by splitting the

BSSS inbreds into ten sets, each set comprising the single

crosses that involved the BSSS inbreds in that set. Such

partitioning was not done for the non-BSSS inbreds so that

only the BSSS parent was assumed untested. Cross vali-

dations were then performed as described above.

Prediction accuracies (rMG) were expressed as the esti-

mated correlation between the marker-predicted genotypic

values and the true genotypic values (Dekkers 2007). The

rMG values were calculated as the correlation between

marker-predicted values and observed phenotypic values

(i.e., adjusted for fixed effects and obtained as the subset of

yA that corresponded to the NU untested hybrids), divided

by the square root of h2. We used the variance among rMG

values across the cross-validation replicates as a measure

of the sampling variance of rMG and further used these

sampling variance estimates to calculate least significant

differences (P = 0.05) between the mean rMG with BLUP

and with RR-BLUP.

Genomewide prediction of testcross performance

The genomewide marker effects from RR-BLUP of the

single crosses were used to predict testcross performance of

doubled haploid lines developed from the same biparental

cross and crossed with the same tester. We considered 14

testcross populations undergoing selection in the AgReliant

Genetics breeding program. Seven were crosses between

BSSS inbreds that were among the 57 BSSS parents of the

single crosses. The other seven were crosses between non-

BSSS inbreds that were among the 42 non-BSSS parents of

the single crosses. The number of progeny in each testcross

population ranged from 71 and 292 with a mean of 162.

The eight testers were among the 59 BSSS inbreds and

44 non-BSSS inbreds used as parents of the 479 single

crosses in this study. All except two testers (N1 and S13)

are currently used as parents of AgReliant Genetics

16 Theor Appl Genet (2013) 126:13–22

123



commercial hybrids. Three of the eight testers (N2, S4, and

S12) carried transgenes for insect resistance, herbicide

tolerance, or both insect resistance and herbicide tolerance.

The mean relative maturity of each biparental cross was

within 4 days of the relative maturity of the tester used.

The parental contribution to inbred progeny was assessed

in each population from the SNP data. Because the parents

were almost completely inbred, transmission could easily

be inferred from the polymorphic markers, and parental

contributions were estimated by counting the number of

alleles inherited by an inbred from a given parent.

The testcrosses were evaluated in 2007 and 2008 in field

trials at 4–10 locations in the US Corn Belt, and the phe-

notypic data within each testcross population were bal-

anced. Traits measured for testcrosses were the same as

those for single crosses. Heritability on an entry-mean basis

was estimated from analysis of variance within each test-

cross population. When h2 was significant, the testcross

performance of the individual inbreds was predicted as

yU1 ¼ T1m1 þ T3m3

and

yU2 ¼ T2m2 þ T4m3

where yU1 was the predicted testcross performance of in-

breds in a BSSS 9 BSSS cross; yU2 was the predicted

testcross performance of inbreds in a non-BSSS 9 non-

BSSS cross; m1, m2, and m3 were the genomewide marker

GCA and SCA effects among the tested single crosses; and

T1, T2, T3, and T4 were incidence matrices that related yU1

or yU2 to m1, m2, and m3. As with the W3 incidence matrix

for marker SCA among single crosses, the elements of the

T3 matrix at a given locus were equal to the product of the

elements of T1 and the coded genotypic values (1 or –1) for

the tester used. Likewise, the elements of the T4 matrix at a

given locus were equal to the product of the elements of T2

and the coded genotypic values for the tester used.

The predictions of testcross performance therefore

included marker GCA effects for the doubled haploids that

were testcrossed and marker SCA effects. Given that

comparisons between predicted and observed performance

were made only within a biparental population crossed to

the same tester, marker GCA effects for the tester were

ignored. Predictions were not made if h2 was not significant.

Correlations between predicted and observed testcross

performance were calculated and were used, along with h2

within each testcross population, in calculating rMG.

Results

The marker-based estimates of coefficient of coancestry

(fij) among BSSS inbreds ranged from zero to 0.90, with a

mean of 0.49 (Fig. 1). The fij among non-BSSS inbreds

ranged from zero to 0.92, with a mean of 0.28. Heritability

among single-crosses (on an entry-mean basis; Bernardo

1996a) was 0.85 for grain yield, 0.98 for grain moisture,

0.83 for stalk lodging, and 0.86 for root lodging. The ratio

of VSCA to the total genetic variance among single crosses

was 0.18 for grain yield, 0.10 for grain moisture, 0.12 for

stalk lodging, and 0.16 for root lodging.

Of the 669 SNP markers, 586 were polymorphic among

the BSSS inbreds resulting in a mean marker interval of

3.22 cM on the 1886-cM linkage map used in this study. A

total of 598 markers were polymorphic among the non-

BSSS inbreds resulting in a mean marker interval of

3.15 cM. In the BSSS group, there were 92 gaps larger than

5 cM and 20 gaps larger than 10 cM. In the non-BSSS

group, there were 99 gaps larger than 5 cM and 26 gaps

larger than 10 cM.

The LD extended farther in the BSSS population than in

the non-BSSS population. The mean r2 between adjacent

markers was 0.35 in the BSSS population and 0.26 in the

non-BSSS population (Fig. 1). In each heterotic group,

more than 40 % of the adjacent markers had an r2 less than

0.10. The percentage of adjacent markers with an r2 greater

than 0.20 was 49 % among the BSSS inbreds and 42 %

among the non-BSSS inbreds.

When both parents of an untested single cross had

available testcross data (denoted by Type 2 in Table 1), the

mean prediction accuracy (rMG) for BLUP ranged from

0.69 for stalk lodging to 0.90 for grain moisture. The BLUP

and RR-BLUP methods did not lead to rMG values that

differed significantly.

When one of the BSSS parents of an untested single cross

(validation set) had not been tested in any hybrid combina-

tion in the training set (denoted by Type 1 in Table 1), the

rMG for BLUP decreased for each of the four traits. The least

significant differences (LSD) indicated that the rMG esti-

mates were more precise with the Type 2 model than with the

Type 1 model. The Type 1 rMG values for BLUP ranged from

0.27 for stalk lodging to 0.75 for grain yield. The corre-

sponding rMG values for RR-BLUP likewise decreased, and

none of the rMG values for BLUP was significantly different

from the corresponding rMG values for RR-BLUP.

Within each biparental population, the mean parental

contribution of the less-represented parental inbred to its

progeny ranged from 0.33 to 0.49 (Table 2). The testcross

h2 within each population ranged from 0.19 to 0.73 for

grain yield (all significantly greater than zero), 0.28 to 0.86

for moisture (all significant), –0.11 to 0.31 for stalk lodging

(one of 14 significant), and –0.08 to 0.35 for root lodging

(3 of 14 significant). Of the 669 SNP markers that were

polymorphic among the single-cross parents, 115–338

(with a mean of 225) were polymorphic within each

biparental cross.
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The rMG values within each testcross population were

generally low and were often negative, ranging from –0.30

to 0.36 for grain yield and from –0.42 to 0.39 for grain

moisture (Table 2). In the one population where stalk

lodging had a significant h2 (S7 9 S1), the rMG was 0.22.

In the three populations where root lodging had a signifi-

cant h2, none of the rMG values was positive or significant

(results not shown). The correlations were generally of the

same magnitude between the seven BSSS populations and

the seven non-BSSS populations, with the exception of

grain moisture. For this trait, the mean rMG was 0.26 for the

BSSS populations and –0.21 for the non-BSSS populations.

Discussion

Our results indicated that RR-BLUP genomewide marker

effects estimated from maize single crosses led to high

correlations between predicted and observed single-cross

performance. However, such high correlations were not

superior to those obtained with a previous BLUP approach

that did not rely on genomewide marker effects, but instead

used random markers to estimate the relatedness among

parental inbreds (Bernardo 1994). Our results also indi-

cated that genomewide marker effects estimated from

maize single crosses had erratic usefulness for predicting

testcross performance within a biparental cross. While our

results are contingent upon the population sizes, numbers

of markers, and germplasm we used, we believe that the

maize data sets in this study were nevertheless typical of

the data sets available in maize breeding programs.

High prediction accuracies among single crosses were

obtained for all traits studied when the two parents of an

untested single cross had testcross data (Type 2 cross

validations in Table 1). The high rMG for single-cross

performance with BLUP did not leave much room for

improvement via RR-BLUP, and the rMG values were

equal between RR-BLUP and BLUP for each trait.

Fig. 1 Distribution of estimates

of marker-based coefficient of

coancestry and r2 between

adjacent SNP markers among

BSSS and non-BSSS inbreds

Table 1 Cross-validation prediction accuracy (rMG) of BLUP and RR-BLUP among maize single crosses

Model Grain yield Grain moisture Stalk lodging Root lodging

Type 2a Type 1 Type 2 Type 1 Type 2 Type 1 Type 2 Type 1

BLUP 0.87 0.75 0.90 0.65 0.69 0.27 0.84 0.54

RR-BLUP 0.87 0.73 0.88 0.64 0.66 0.31 0.81 0.53

LSD0.05
b 0.05 0.10 0.03 0.11 0.11 0.26 0.05 0.19

a Type 2 hybrid had both parents included in the model training; Type 1 hybrids had only a single parent included in the model training
b Based on the least significant differences (LSD), no significant differences (P = 0.05) were found in rMG between BLUP and RR-BLUP for

any trait. Each rMG was significantly different from zero
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Theoretical results (Habier et al. 2007; Goddard 2009;

Albrecht et al. 2011) have suggested the equivalency of

the RR-BLUP and BLUP approaches, and that markers

actually capture relatedness information in RR-BLUP. On

the other hand, simulation results (Zhong et al. 2009)

have shown that RR-BLUP and BLUP differ in their

prediction accuracies under different levels of linkage

disequilibrium between markers and QTL. Our unpub-

lished simulation results (R. Bernardo, unpublished data;

Supplementary Table 1) showed that in a biparental cross

with strong linkage disequilibrium, gains from multiple

cycles of selection were 4–22 % higher with RR-BLUP

than with BLUP. We interpret this apparent paradox

between theoretical results (for the equivalency between

RR-BLUP and BLUP) versus simulation results (for the

non-equivalency between RR-BLUP and BLUP) to

indicate that the contributions of linkage disequilibrium

and relatedness are indeed confounded in RR-BLUP but,

when linkage disequilibrium between markers and QTL

is absent or negligible, RR-BLUP and BLUP are

equivalent (Habier et al. 2007). Procedures have been

proposed by Habier et al. (2007) and Luan et al. (2012)

to estimate the relative contributions of linkage disequi-

librium versus relationship information in RR-BLUP. The

lack of detailed pedigree information in our study pre-

cluded such an analysis.

When one of the parents of a single-cross had not been

tested (Type 1 cross validations in Table 1), rMG decreased

moderately for grain yield and grain moisture but strongly

for root and stalk lodging. As with the Type 2 cross vali-

dations, the rMG values for the Type 1 cross validations

remained equal between BLUP and RR-BLUP. In BLUP,

much of the information exploited in predicting the per-

formance of an i 9 j cross is from the testcross perfor-

mance of i and j themselves (i.e., with other inbreds within

the respective heterotic groups; Bernardo 1996b). In the

Type 1 cross validations, inbred i itself did not have test-

cross data in BLUP but the marker alleles in inbred i were

represented in RR-BLUP. Our results indicated that the

marker effects in RR-BLUP were unable to compensate for

the loss of information in BLUP when one parent of the

single-cross hybrid was assumed untested. This result

needs further investigation.

The square root of heritability (h) is defined as the

correlation between phenotypic values and the underlying

genotypic values. Despite the moderate to high h2 values

for grain yield and grain moisture within different bipa-

rental crosses (Table 2), the rMG values within biparental

crosses were erratic and generally low. While 669 SNPs

were polymorphic among the single crosses, only 115–338

SNPs were polymorphic within the biparental crosses. This

result indicated that much of the variation among the single

Table 2 Testcross population parameters, parental contributions, testcross heritabilities, and RR-BLUP prediction accuracies within 14 maize

biparental populations

Pedigree Tester Na NMarkers
b Parental contributionc Heritability Prediction accuracy (rMG)

Mean Range Grain

yield

Grain

moisture

Root

lodging

Stalk

lodging

Grain

yield

Grain

moisture

S1 9 S2 N1 214 115 0.47 (0.30, 0.63) 0.19*d 0.67* –0.06 0.11 0.21* 0.23*

S1 9 S3 N1 177 214 0.49 (0.19, 0.80) 0.48* 0.7* 0.01 0.19 0.32* 0.38*

S4 9 S5 N1 177 231 0.35 (0.12, 0.88) 0.45* 0.75* –0.03 0.15 –0.30* 0.33*

S4 9 S6 N2 185 239 0.48 (0.26, 0.74) 0.59* 0.32* 0.21* –0.04 0.16* 0.00

S7 9 S1 N2 151 203 0.48 (0.17, 0.78) 0.54* 0.86* 0.22* 0.31* 0.14 0.25*

S8 9 S9 N2 292 197 0.33 (0.10, 0.90) 0.44* 0.73* –0.01 –0.02 0.36* 0.39*

S10 9 S11 N3 184 232 0.47 (0.14, 0.86) 0.73* 0.63* –0.08 0.04 0.30* 0.26*

N4 9 N5 S10 141 249 0.34 (0.13, 0.52) 0.25* 0.83* 0.12 0.07 0.18 –0.14

N4 9 N5 S12 77 249 0.34 (0.16, 0.52) 0.5* 0.56* 0.35* 0.06 0.33* –0.33*

N6 9 N4 S7 171 203 0.43 (0.15, 0.85) 0.39* 0.77* 0.02 –0.05 –0.08 –0.14

N6 9 N4 S12 71 203 0.44 (0.14, 0.86) 0.35* 0.28* 0.07 –0.11 –0.12 –0.11

N7 9 N3 S4 109 249 0.44 (0.38, 0.62) 0.32* 0.48* 0.11 0.09 0.07 –0.42*

N8 9 N6 S13 211 338 0.33 (0.17, 0.48) 0.43* 0.83* 0.002 0.11 0.21* –0.08

N7 9 N9 S4 114 243 0.33 (0.22, 0.78) 0.37* 0.72* 0.11 –0.04 –0.10 –0.24*

* Significant at P = 0.05
a Number of individuals in the biparental population
b Number of polymorphic SNPs in the biparental population
c Parental contribution of the less-represented parent
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crosses was not expressed within a biparental cross, to the

extent that prediction equations that work well across

diverse single crosses might not work well—and may even

lead to negative correlations, as we observed among the

non-BSSS biparental crosses—within much smaller pock-

ets of genetic variation represented by biparental crosses.

Estimates of testcross variance within the BSSS and non-

BSSS biparental populations (x axis in Fig. 2) were indeed

smaller than the estimates of GCA variances among single

crosses (VGCA1 = 40.3 among BSSS inbreds and VGCA2 =

40.4 among non-BSSS inbreds for grain yield; VGCA1 =

3.57 and VGCA2 = 3.93 for grain moisture).

Furthermore, genomewide predictions of testcross per-

formance would be accurate only if the genomewide marker

effects estimated from single-cross data remain consistent

with the marker effects expressed within a biparental cross.

One approximate way to gauge such consistency is to

compare the testcross variance within an A 9 B biparental

cross with the sum of squares of the marker GCA effects

(i.e., estimated from single-cross data) for the subset of

markers polymorphic in A 9 B. For both grain yield and

grain moisture, we found a poor correspondence between

estimates of within-population testcross variance and the

sum of squared effects at polymorphic markers (Fig. 2).

Such poor correspondence may have been caused by

genetic drift; by QTL 9 genetic background interaction;

by differences in SNP allele frequencies in the training

(single-cross) and prediction (testcross) populations; and

by genotype 9 environment interaction. Differences in

SNP allele frequencies would have led to different amounts

of information for each homozygote, and the resulting

differences in the amount of shrinkage of SNP effects

towards the mean may have contributed to differences in

marker-effect estimates between the single crosses and

testcrosses. Assessing the influence of genotype 9 envi-

ronment (particularly genotype 9 year) interaction on our

results is not straightforward. Genotype 9 year interaction

effects were likely confounded with genotypic effects of

the 479 single crosses, especially with about 50 % of the

single crosses having been evaluated in a single experiment

and, therefore, only in a single year (Supplementary

Fig. 2). On the other hand, the mean number of locations

per experiment was large (25 for grain yield and moisture

and 23 for stalk and root lodging; Supplementary Fig. 1)

and the exploitation of information from relatives, evalu-

ated in different experiments or years, in BLUP and RR-

BLUP (Habier et al. 2007, Goddard 2009) would have

lessened the effects of genotype 9 environment interaction

on the predictions. Overall, we surmise that although

genotype 9 environment interactions may have affected

the values of rMG per se shown in Table 1, they did not

substantially affect our conclusions regarding the useful-

ness of BLUP versus RR-BLUP for predicting single cross

performance. This is because, for predicting single-cross

performance, the same training and validation data sets

were used in BLUP and in RR-BLUP and both methods

were therefore subjected to the same level of confounding

of genotypic effects with genotype 9 environment inter-

action effects. However, for predicting testcross perfor-

mance, the environments used to evaluate the training data

set (i.e., single crosses) were different from the environ-

ments used to evaluate the prediction data set (i.e., bipa-

rental crosses). Fewer environments (4–10 locations in

2007 and 2008) were also used to evaluate the testcrosses.

We therefore surmise that any reductions in rMG due to

genotype 9 environment interaction in this study were

larger for testcross performance than for single cross

performance.

We believe that in the context of genomewide predic-

tion, the r2 between adjacent markers is the most
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Fig. 2 Estimates of testcross genetic variance within seven BSSS

biparental crosses (solid triangles) and seven non-BSSS biparental

crosses (open squares), versus sum of squared single-cross marker

effects at the 115–338 SNP markers that were polymorphic in each

cross
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meaningful measure of LD. This is because the r2 between

non-adjacent markers is arguably of less consequence as

long as the effect of a QTL can be adequately captured by

its flanking (i.e., adjacent) markers. Calus et al. (2008)

found that genomewide predictions are useful even when

the mean r2 between adjacent markers is as low as 0.10,

whereas Hayes et al. (2009) recommended an r2 of C0.20

between adjacent markers. As previously mentioned, the

mean r2 between adjacent markers was 0.35 in the BSSS

population and 0.26 in the non-BSSS population.

The higher level of LD among the BSSS inbreds than

among the non-BSSS inbreds was consistent with the BSSS

heterotic group having fewer founder inbreds and, conse-

quently, a narrower genetic base. The same result regarding

LD among BSSS inbreds and among non-BSSS inbreds was

found by Van Inghelandt et al. (2011). More generally, Van

Inglehandt et al. examined the extent of LD with 359 simple

sequence repeat and 8,244 SNP markers in 1,537 com-

mercial maize inbred lines belonging to four heterotic

groups. The r2 between adjacent markers was lower

(r2 = 0.28 among BSSS inbreds) in the Van Inghelandt

et al. (2011) study than in our study. On the other hand, the

LD in our study was lower than that found by Albrecht et al.

(2011), who examined 1,380 dent inbreds (derived from 29

parental inbreds and four single crosses) genotyped with

1,152 SNP markers. Differences in LD among the Van

Inghelandt et al. (2011) study, Albrecht et al. (2011) study,

and our study can be attributed to the joint effects of dif-

ferences in the number of inbreds, types of inbred progeny

(i.e., recombinant inbreds vs. doubled haploids), genetic

diversity, and marker density in each study.

We suggest two possible ways to improve genomewide

predictions, particularly for testcross performance. The first

is to increase marker density. With recent developments in

marker genotyping [Illumina MaizeSNP50 BeadChip

(Gupta et al. 2008) and genotyping by sequencing

(Glaubitz et al. 2011)] it may be possible to economically

increase the number of markers used by many fold. This

would allow a stronger LD between markers and QTL and

might subsequently allow for more accurate genomewide

predictions based on marker-effect estimates from single-

cross data. On the other hand, given that factors other than

the level of LD (i.e., QTL 9 genetic background interac-

tion) may have led to the poor predictions of testcross

performance, it is unclear whether a stronger level of LD

would have made a substantial difference in our results.

A second way to improve the predictions of testcross

performance within biparental crosses is to use multiple,

related biparental populations (instead of single crosses) as

a training population (Albrecht et al. 2011). In preliminary

analysis using a subset of the testcross populations pre-

sented here, we were able to predict grain yield with low to

moderate accuracy. We calculated RR-BLUP equations

from two testcross populations (S1 9 S2 and S7 9 S1) and

then applied the prediction equations to three different

testcross populations (S8 9 S9, S1 9 S3, and S10 9 S11).

The rMG for grain yield was 0.19 for S1 9 S3, 0.27 for

S10 9 S11, and 0.62 for S8 9 S9. The data sets in this

study were not extensive enough to allow a detailed study

of genomewide predictions across multiple populations,

and we are currently investigating this method with larger

data sets that would allow the identification of factors that

contribute to high accuracy of genomewide predictions.
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